Antithrombotic therapy in atrial fibrillation associated with valvular heart disease: a joint consensus document from the European Heart Rhythm Association (EHRA) and European Society of Cardiology Working Group on Thrombosis, endorsed by the ESC Working Group on Valvular Heart Disease, Cardiac Arrhythmia Society of Southern Africa (CASSA), Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), South African Heart (SA Heart) Association and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE)

Gregory Y. H. Lip1*, Jean Philippe Collet2, Raffaele de Caterina3, Laurent Fauchier4, Deirdre A. Lane5, Torben B. Larsen6, Francisco Marin7, Joao Morais8, Calambur Narasimhan9, Brian Olshansky10, Luc Pierard11, Tatjana Potpara12, Nizal Sarrafzadegan13, Karen Sliwa14, Gonzalo Varela15, Gemma Vilahur16, Thomas Weiss17, Giuseppe Boriani18 and Bianca Rocca19

* Corresponding author. Tel/fax: +44 121 5075503. E-mail address: g.y.h.lip@bham.ac.uk
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Atrial fibrillation (AF) is a major worldwide public health problem, and AF in association with valvular heart disease (VHD) is also common. However, management strategies for this group of patients have been less informed by randomized trials, which have largely focused on ‘non-valvular AF’ patients. Thrombo-embolic risk also varies according to valve lesion and may also be associated with CHA2DS2VASc score risk factor components, rather than only the valve disease being causal.

Given marked heterogeneity in the definition of valvular and non-valvular AF and variable management strategies, including non-vitamin K antagonist oral anticoagulants (NOACs) in patients with VHD other than prosthetic heart valves or haemodynamically significant mitral valve disease, there is a need to provide expert recommendations for professionals participating in the care of patients presenting with AF and associated VHD.

To address this topic, a Task Force was convened by the European Heart Rhythm Association (EHRA) and European Society of Cardiology (ESC) Working Group on Thrombosis, with representation from the ESC Working Group on Valvular Heart Disease, Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), South African Heart (SA Heart) Association and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE) with the remit to comprehensively review the published evidence, and to publish a joint consensus document on the management of patients with AF and associated VHD, with up-to-date consensus recommendations for clinical practice for different forms of VHD.

This consensus document proposes that the term ‘valvular AF’ is outdated and given that any definition ultimately relates to the evaluated practical use of oral anticoagulation (OAC) type, we propose a functional Evaluated Heartvalves, Rheumatic or Artificial (EHRA) categorization in relation to the type of OAC use in patients with AF, as follows: (i) EHRA Type 1 VHD, which refers to AF patients with VHD needing therapy with a Vitamin K antagonist (VKA); and (ii) EHRA Type 2 VHD, which refers to AF patients with VHD needing therapy with a VKA or a Non-VKA oral anticoagulant (NOAC), also taking into consideration CHA2DS2VASc score risk factor components.

This consensus document also summarizes current developments in the field, and provides general recommendations for the management of these patients based on the principles of evidence-based medicine.

Keywords

Atrial fibrillation • Valvular heart disease • Mitral stenosis • Mechanical prosthetic heart valves • Thromboembolism • Stroke • Stroke prevention • Anticoagulation • Vitamin K antagonists • Non-vitamin K antagonist oral anticoagulants • Pregnancy
Preamble and valvular heart disease definition

Atrial fibrillation (AF) is a major public health problem with global prevalence rates (per 10000000 population) in 2010 being 596.2 (95% uncertainty interval (UI), 558.4–636.7) in men and 373.1 (95% UI, 347.9–402.2) in women; the incidence rates increased to 77.5 (95% UI, 65.2–95.4) in men and 59.5 (95% UI, 49.9–74.9) in women. Worldwide, AF in association with valvular heart disease (VHD) is also common, and management strategies for this group of patients have been less addressed by randomized trials. The latter have largely focused on ‘non-valvular AF’ patients leading to major uncertainties over how to define (and treat) such patients.

There is also an important heterogeneity in the definition of valvular and non-valvular AF. Some physicians assume that any valve disease should be considered as ‘valvular’ AF. Others consider that only mechanical valve prosthesis and rheumatic mitral stenosis should be defined as ‘valvular’ AF.

The term valvular AF has been arbitrarily applied and the 2016 ESC guidelines have avoided the term ‘valvular AF’ and refer simply to ‘AF related to hemodynamically significant mitral stenosis or prosthetic mechanical heart valves’. AF clearly leads to an incremental risk for thromboembolism in patients with mitral valve stenosis, but there are limited data for other valvular diseases. Another proposal is to use the acronym MARM-AF as a simple acronym to designate ‘Mechanical and Rheumatic Mitral AF’ as an alternative to term ‘valvular AF’ to designate the clinical scenarios for which at the non-vitamin K antagonist oral anticoagulants (NOACs) are not indicated.

For this document we recognize the uncertainty in terminology, and our scope largely relates to AF related to ‘hemodynamically significant’ rheumatic VHD (ie. severe enough to impact on patient’s survival or necessitates an intervention or surgery) or prosthetic mechanical heart valves. Nonetheless, thrombo-embolic (TE) risk varies according to valve lesion and may be associated with CHA2DS2VASc score risk factor components, rather than the valve disease per se being causal. TE risk may also be influenced not only by type but also the severity of the lesion. For example, the degree of mitral regurgitation may matter when it comes to risk of TE as some studies suggest that mild (Grade 1) mitral regurgitation is associated with a 2.7-fold increased risk of stroke/TE, while severe forms may possibly have a ‘protective’ effect (HR = 0.45 for stroke and 0.27 for LA stasis). An appropriate definition of ‘valvular AF’ would need to identify a subgroup of patients with similar pathophysiology of thrombo-embolism, TE risk, and treatment strategies; however, this would be challenging given the major heterogeneity of the condition.

This consensus document proposes that the term ‘valvular AF’ is outdated and given that any definition ultimately relates to the evaluated practical use of oral anticoagulation (OAC) type, we propose a functional EHRA (Evaluated Heartvalves, Rheumatic or Artificial (EHRA) Type 1, which refers to AF patients with VHD needing therapy with a Vitamin K antagonist (VKA))

- Mitral stenosis (moderate-severe, of rheumatic origin)
- Mechanical prosthetic valve replacement

[EHRA Type I VHD is broadly similar to the previously described MARM-AF]

Evaluated Heartvalves, Rheumatic or Artificial (EHRA) Type 2 VHD, which refers to AF patients with VHD needing therapy with a VKA or a NOAC, also taking into consideration CHA2DS2VASc score risk factor components:

- Mitral regurgitation
- Mitral valve repair
- Aortic stenosis
- Aortic regurgitation
- Tricuspid regurgitation
- Tricuspid stenosis
- Pulmonary regurgitation
- Pulmonic stenosis
- Bioprosthetic valve replacements
- Trans-aortic valve intervention (TAVI)

This classification would have the advantage that it may easily evolve or be updated (type 1 may become type 2 or vice versa) when there are new results. For example, transcatheter mitral valve interventions (TMVI, e.g. to include both MitraClip and Mitral valve replacement) are emerging as a possible therapeutic options, but more data are awaited especially in relation to OAC use.

A recent physicians survey reported marked heterogeneity in the definition of valvular and non-valvular AF and variable management strategies, including NOACs in patients with VHD other than prosthetic heart valves or haemodynamically significant mitral stenosis. Thus, there is a need to provide expert recommendations for professionals participating in the care of patients presenting with AF and associated VHD. These may include rheumatic VHD, mechanical or biological prosthetic valves and percutaneous aortic valve implantation (TAVI), as well as those having undergone mitral valve repair. Whilst hypertrophic cardiomyopathy is sometimes discussed in association with valvular AF, this would not be addressed in this document, given specific guidelines on the management of this condition.

To address this topic, a Task Force was convened by the European Heart Rhythm Association (EHRA) and European Society of Cardiology (ESC) Working Group on Thrombosis, with representation from the ESC Working Group on Valvular Heart Disease, Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), South African Heart (SA Heart) Association and Sociedad Latinoamericana de Estimulación Cardiaca y Electrofisiología (SOLEACE) with the remit to comprehensively review the published evidence, and to publish a joint consensus document on the management of patients with AF and associated VHD, with up-to-date consensus recommendations for clinical practice.

This document summarizes current developments in the field, and provides general recommendations for the management of these patients based on the principles of evidence-based medicine.
Rather than ‘valvular AF’ a more functional Evaluated Heartvalves, Rheumatic or Artificial (EHRA) categorization in relation to the type of OAC use is recommended in patients with AF, as follows:

(i) EHRA Type 1 VHD, which refers to AF patients with VHD needing therapy with a Vitamin K antagonist (VKA); and
(ii) EHRA Type 2 VHD, which refers to AF patients with VHD needing therapy with a VKA or a Non-VKA oral anticoagulant (NOAC), also taking into consideration CHA2DS2VASc score risk factor components.

Evidence review

Members of the Task Force were asked to perform a detailed literature review, weigh the strength of evidence for or against a particular treatment (or procedure), and include estimates of expected health outcomes where data exist. Patient-specific modifiers, comorbidities, and issues of patient preference that might influence the choice of particular tests or therapies are considered, as are frequency of follow-up and cost effectiveness. In controversial areas, or with regard to issues without evidence other than usual clinical practice, a consensus was achieved by agreement of the expert panel after thorough deliberations. This document was prepared by the Task Force with representation from EHRA, HRS, APHRS, and SOLAECE. The document was peer-reviewed by official external reviewers representing EHRA, HRS, APHRS, and SOLAECE.

Consensus statements are evidence-based, and derived primarily from published data. Current systems of ranking level of evidence are becoming complicated in a way that their practical utility might be compromised. We have, therefore, opted for an easier and, perhaps, more user-friendly system of ranking that should allow physicians to easily assess current status of evidence and consequent guidance (Table 1).

Thus, a ‘green heart’ indicates a recommended statement or recommended/indicated treatment (or procedure) and is based on at least one randomized trial, or is supported by large observational evidence that it is beneficial and effective. A ‘yellow heart’ indicates general agreement and/or scientific evidence favouring a statement or the usefulness/efficacy of a treatment or procedure. A yellow heart may be supported by randomized trials based on small number of patients or not widely applicable. Treatment strategies for which there have been scientific evidence that they are potentially harmful and should not be used are indicated by a ‘red heart’.

EHRA grading of consensus statements does not have separate definitions of Level of Evidence. The categorisation used for consensus statements (used in consensus documents) should not be considered as being directly similar to that used for official society guideline recommendations which apply a classification (I–III) and level of evidence (A, B, and C) to recommendations in official guidelines.

Finally, this is a consensus document that includes evidence and expert opinions from several countries. The anticoagulation approaches discussed may, therefore, include drugs that do not have the approval of governmental regulatory agencies in all countries.

Relationships with industry and other conflicts

It is EHRA/ESC policy to sponsor position papers and guidelines without commercial support, and all members volunteered their time. Thus, all members of the writing group as well as reviewers have disclosed any potential conflict of interest in detail, at the end of this document.

Epidemiology of valvular atrial fibrillation and implications for stroke/thrombo-embolism

The reported prevalence of AF varies by geographical region. In Australian, North American and European studies, approximately 1–2% of adults have AF. In Asians, the reported prevalence of AF ranges from 0.1–4.0% in the community and 2.8–14% in hospital-based studies.

Nonetheless, robust data on the epidemiology of patients with AF and associated VHD are limited. Examples of available data from some global registries and large trials are reported in Supplementary material online, Table S1. In the RE-LY AF Registry which enrolled patients presenting to an emergency department with AF at 164 sites in 46 countries, rheumatic heart disease was present in 2.2% of North American patients, in comparison with 21.5% in Africa and 31.5% in India; interestingly thrombo-embolism rates were related to clinical risk profile, as expressed by CHADS2 score, irrespective of the presence of rheumatic VHD. Detailed data on the geographic distribution of valvular AF are also reported in the Supplementary material online.

Table 1 Scientific rationale of recommendations

<table>
<thead>
<tr>
<th>Definitions where related to a treatment or procedure</th>
<th>Consensus statement</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific evidence that a treatment or procedure is beneficial and effective. Requires at least one randomized trial, or is supported by strong observational evidence and authors’ consensus (as indicated by an asterisk).</td>
<td>Recommended/indicated</td>
<td>Green</td>
</tr>
<tr>
<td>General agreement and/or scientific evidence favour the usefulness/efficacy of a treatment or procedure. May be supported by randomized trials based on small number of patients or not widely applicable.</td>
<td>May be used or recommended</td>
<td>Yellow</td>
</tr>
<tr>
<td>Scientific evidence or general agreement not to use or recommend a treatment or procedure.</td>
<td>Should NOT be used or recommended</td>
<td>Red</td>
</tr>
</tbody>
</table>

This categorization for our consensus document should not be considered as being directly similar to that used for official society guideline recommendations which apply a classification (I–III) and level of evidence (A, B, and C) to recommendations.
Pathophysiology—a brief overview

There is a general agreement that AF is independently associated with thrombotic diathesis. The drivers include the three elements of Virchow’s triad: blood flow alterations, endocardial injury and changes in blood constituents. In fact, according to the recently published EHRA/HRS/APHRS/SOLAECE consensus document, atrial tissue in VHD is characterized, at a histopathological level, by a combination of cardiomyocyte and fibrotic changes. Co-morbidities present in most AF patients may contribute to enhance thrombotic risk by pro-inflammatory/pro-atherogenic mechanisms. An overview of the pathophysiology of thrombogenesis in AF in haemodynamically significant mitral stenosis and/or mechanical heart valves prosthesis is shown in Figure 1.

The risk of thrombosis, however, is enhanced because of the presence of prosthetic valves which activate the coagulation cascade (both the intrinsic and extrinsic pathway) leading to thrombin production (a strong platelet agonist); and, although to a lesser extent, because of the considerable degree of mitral stenosis which induces flow turbulences capable of inducing platelet activation. Finally, AF also frequently occurs in patients with severe aortic stenosis, which can be associated to the Heyde’s syndrome due to Von Willebrand Factor (VWF) consumption leading to an acquired bleeding disorder.

Figure 1 Pathophysiology of thrombogenesis in atrial fibrillation (AF) related prosthesis and/or mitral valve diseases. In valvular-AF there is a propensity to thrombosis because of the presence of the Virchow’s triad components which, in turn, are found likely boosted by patients’ co-morbid conditions. The risk of thrombosis, however, is enhanced because of the presence of prosthetic valves which activate the coagulation cascade (both the intrinsic and extrinsic pathway) leading to thrombin production (a strong platelet agonist); and, although to a lesser extent, because of the considerable degree of mitral stenosis which induces flow turbulences capable of inducing platelet activation. Finally, AF also frequently occurs in patients with severe aortic stenosis, which can be associated to the Heyde’s syndrome due to Von Willebrand Factor (VWF) consumption leading to an acquired bleeding disorder.
Surgical heart valve replacement surgery induces tissue damage with TF release leading to extrinsic coagulation pathway activation after binding to plasma Factor (F) VII/FVIIa. Moreover, the exposure of valve leaflets, struts and/or sewing ring to the circulating blood can activate the contact (intrinsic) coagulation pathway. Both intrinsic and extrinsic pathways converge factor X (FX) activation and then the transformation of prothrombin into thrombin (FIIa) and formation of the fibrin mesh. The vitamin K antagonist (VKA), warfarin, by blocking the formation of the vitamin K-dependent clotting FVII, FIX, FX, and FII prevents the activation of the coagulation cascade at the extrinsic and intrinsic pathway levels.

In addition to the thrombogenic contribution of plasma coagulation in valvular AF, platelet activation may possibly contribute, although to a much lesser extent, to promote thrombogenesis, particularly in mild-to-severe mitral stenosis. It is also possible that moderate to severe mitral stenosis causes increased blood stasis, due to the severe dilatation of the left atrium occurring in this condition. Finally, acquired type IIa von Willebrand disease and bleeding complications can be associated with severe aortic stenosis due to high-molecular weight multimer consumption.

Oral anticoagulation with vitamin K antagonists in patients with AF and prosthetic heart valves, including bioprostheses

Mechanical heart valves

Oral anticoagulation (OAC) with VKA is crucial for prevention of TE in patients with mechanical heart valves, regardless the presence or absence of AF. The ESC guidelines establish the risk of TE in patients with mechanical valves according to valve type and position, and also according to the individual patient risk profile or comorbidities. Warfarin and other VKA are the most widely used OACs, and are titrated according to international normalized ratio (INR) range and target value which is also related with associated risk factors (Table 2).

The duration of antithrombotic therapy also varies according to a number of factors. Lifelong anticoagulant treatment is indicated for all patients with mechanical valves and those with bioprosthetic valves or native valve disease with ≥1 additional risk factors.

Clinical trials with VKA are sparse and recommendations are mostly based on old trials, with the oldest types of mechanical valve prostheses, and AF patients were excluded.

Patients with bioprostheses and additional risk factors for embolism (AF, venous TE, hypercoagulable state, or with a lesser degree of evidence, severely impaired left ventricular function) require life-long OAC. The use of NOACs instead of warfarin in this setting is accepted by the more recent document of recommendations by EHRA in spite of a lack of randomized clinical trials (RCT) (see Antithrombotic therapy in patients with AF undergoing TAVI or LAAO section for NOACs and bioprosthesis).

Bioprostheses

After biological valve replacement, thrombo-embolic risk is estimated between 0.6 to 3.3% per year without anticoagulation, after the third month. The thrombo-embolic risk associated with a bioprosthesis and sinus rhythm is higher in the first 3 months after surgery, the risk being almost eliminated in anticoagulated patients for aortic bioprosthesis, but remaining higher in patients with a mitral bioprosthesis. The benefit of an initial anticoagulant treatment following aortic valve replacement with a bioprosthesis and no AF is however debated.

Overall AF patients with a bioprosthesis had a non-significantly higher risk of stroke/TE events compared with patients with nonvalvular AF, and VKA use was independently associated with a lower risk of thrombo-embolic events (hazard ratio 0.83, 95% CI 0.71–0.98).

One small pilot study compared Dabigatran Versus Warfarin After Bioprosthesis Valve Replacement for the Management of Atrial Fibrillation Postoperatively (DAWA Pilot Study) but small numbers preclude definitive conclusions.

Recent small studies also suggest that NOACs can be a reasonable alternative to VKA in patients with AF and remote bioprosthetic valve implantation, however larger studies are needed to define the safety and efficacy profile. Data on thromboprophylaxis in patients with AF and TAVI, which is actually the insertion of a bioprosthesis, are preliminary and discussed in detail elsewhere in the document section.

Mitral valve repair

Patients undergoing mitral valve repair have a small risk of TE, with the highest risk of TE occurring during the first year after surgery. Guidelines therefore recommend OAC during the first 3–6 months after surgery. However, only limited data are available on the efficacy of warfarin therapy in the early stages after valve surgery, and the use of short-term VKAs in patients with mitral valve annuloplasty is also controversial. It is therefore not clear whether patients with AF in addition to valve repair are markedly different from the patients with AF and no VHD.

North American and European guidelines have a different position on this issue, the former considering AF is ‘valvular AF’ whilst ESC guidelines do not.

Table 2 Target international normalized ratio for some examples of mechanical prosthesis

<table>
<thead>
<tr>
<th>Prosthesis thrombogenicity</th>
<th>Valve type</th>
<th>Patient-related risk factors*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Carmedics, Medtronic Hall, St Jude Medical, ON-X</td>
<td>Risk factor ≥ 1</td>
</tr>
<tr>
<td>Medium</td>
<td>Other bileaflet valves</td>
<td>3.5</td>
</tr>
<tr>
<td>High</td>
<td>Lillhei-Kaster, Omniscience, Starr-Edwards, Bjork-Shiley and other tilting-disc valves</td>
<td>4.0</td>
</tr>
</tbody>
</table>

*Risk factors: previous thromboembolism; AF; mitral stenosis of any degree; left ventricular ejection fraction < 35%. Reproduced from reference.
Consensus statements

<table>
<thead>
<tr>
<th>Coloured heart</th>
<th>Supporting references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well managed VKA monotherapy with good anticoagulation control (e.g. TTR >65–70%), is generally recommended, taking into account the type of valve, the position, and additional risk factor(s), including atrial fibrillation.</td>
<td></td>
</tr>
<tr>
<td>Patients with a bioprosthesis valve and atrial fibrillation require lifelong OAC.</td>
<td></td>
</tr>
</tbody>
</table>

Indications of ‘add on’ antiplatelet therapy in patients with atrial fibrillation and prosthetic mechanical heart valves

Arterial TE and valve thrombosis are ~12%/year and 22%/year, for mechanical valve prosthesis in the aortic and mitral position, respectively, in patients without VKA prophylaxis.29 The residual risk ranges from 0.5%/year, to 2.5%/year,29,42–44 in VKA-treated patients without additional cardiovascular risk factors such as AF. A higher incidence is associated with the mitral (~2%/year) vs. the aortic (~1%/year) position, depending also on the type of valve and VKA intensity.29,43,44 AF and/or other risk factors (e.g. heart failure, even without AF) increase TE risk by four-fold, from 4% up to 8%/year,5–47 even on adequate VKA treatment.45,46

Given this high residual TE risk, RCT have compared VKA alone vs. VKA combined with different aspirin doses and/or dipyridamole29,48,49 (Table 3).

Despite major methodological limitations of these studies including small sample size, heterogeneities in thrombotic risk level at study entry and anticoagulation intensity, inconsistencies in safety and efficacy endpoint definitions,48 there may possibly be some benefit of adding low-dose aspirin (between 75 and 200 mg daily) to VKA in patients with mechanical valve prosthesis and additional risk factors including AF.29,48,54 This approach lowered TE complications in the majority of studies,29,45,46,48,54 and two meta-analyses showed ~60% relative risk reduction (RRR) of TE and ~50% RRR of all-cause mortality.48,49 (Table 3). Nonetheless, the relative risk of major bleeding with VKAs plus antiplatelet therapy increases by ~58% across studies including aspirin daily doses from 100 to 1000 mg,48,49 and high dose dipyridamole alone or with aspirin.48 Importantly, major bleeding appears significantly affected by aspirin dose: the association with low dose (100 mg) shows a bleeding risk significantly lower than higher doses,50,52 and not significantly different from VKA alone (OR = 0.96; 95% CI 0.60–1.55; 2.58; 95% CI 1.43–2.55 for low and high doses vs. VKA, respectively, P = 0.002 for the high aspirin dose combination vs. VKA) with similar efficacy (Table 3).48,50 Thus, VKA plus low-dose aspirin (75–100 mg daily) for the association of mechanical prosthetic valve and AF, is recommended by the AHA/ASA/ACCP as a class I (level A or B) recommendation,42,44,55,56 but as a class IIb C recommendation by the ESC.

When the aspirin/VKA combination is used, anticoagulation should be titrated taking into account the type of valve, the position, and comorbidities. The target INR for AF patients with aortic mechanical prosthetic valve on VKA and low-dose aspirin should be 2.5 (range 2.0–3.0), with close attention to the quality of anticoagulation control, with time in therapeutic range (TTR) >65–70%. This applies to low-thrombogenicity valves, including Carbomedics, Medtronic Hall, St Jude Medical, ON-X; but there is insufficient data for other valves, even if bleelafet.

Whether the INR target should be 2.5 (range 2–3) or 3 (range 2.5–3.5) in AF patients with mitral prosthetic valve on both VKA and low-dose aspirin is less clear. High intensity VKA (i.e. INR range 3–4 or higher), combined with aspirin, has been consistently associated with higher major bleeding and comparable benefit as lower intensity VKA with aspirin.51,52,57

Evidence for non-vitamin K antagonist oral anticoagulants use in patients with atrial fibrillation and valvular heart disease

Subgroups from the recent non-vitamin K antagonist oral anticoagulant trials

The efficacy and safety of NOACs for the prevention of stroke/systemic embolic events (SSEE) in patients with non-valvular AF has been established by the pivotal randomized trials.58,60–67 These trials excluded patients with significant mitral stenosis or prosthetic mechanical valves but enrolled participants (13–26%, depending on
Table 3 Randomized trials and meta-analyses comparing different intensities of VKA alone vs. VKA plus aspirin in patients with mechanical valve replacement since 1990

<table>
<thead>
<tr>
<th>Reference</th>
<th>Design</th>
<th>Patients</th>
<th>AF and MVR position (%)</th>
<th>Efficacy</th>
<th>Safety</th>
<th>Comments or additional data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turpie et al. 45</td>
<td>RCT: VKA (INR target 3–4.5) + ASA 100 mg daily vs. VKA (INR target 3–4.5) + placebo mean f.u. 2.5 years</td>
<td>370 patients with MVR or tissue valve replacement + AF or TE; mean age 58 years males 50%</td>
<td>AF: 45% per arm; Mitral 44%; Aortic 46% Multiple 10%</td>
<td>Major systemic embolism or vascular death: 1.9%/year ASA vs. 8.5%/year placebo NNT = 15</td>
<td>Major bleeding: 8.5%/year ASA, 6.6%/year placebo P = 0.43; NNH = 52</td>
<td>Mean INR: 3 in each arm. Net beneficial effect favoured ASA (RR 61%)</td>
</tr>
<tr>
<td>Altman et al. 50</td>
<td>RCT: VKA (INR target 2–3) plus ASA 100 mg or ASA 650 mg daily mean f.u. 20 months</td>
<td>416 patients with mechanical MVR; mean age 60 years males 50%</td>
<td>AF: ~2.3% per arm Mitral 26%; Aortic 74%</td>
<td>Major TE: 0.5%/year in low-ASA and 1.1%/year high-ASA; Vascular death 1.2%/year low-ASA vs. 3.4%/year high-ASA, p = 0.03; Major bleeding: 3.6%/year low-ASA vs. 5.1%/year high-ASA; any bleeding: 7.9%/year low-ASA vs. 13.4%/year high-ASA, p = n.s.</td>
<td>Vascular mortality and non-fatal TE: 3.4% low-ASA and 2.9% high ASA, p = n.s.</td>
<td></td>
</tr>
<tr>
<td>Meschengieser et al. 51</td>
<td>RCT: high intensity VKA (INR 3.5–4.5) vs. less intense VKA (INR 2.5–3.5) + ASA 100 mg median f.u.: 23 months</td>
<td>503 patients with MRV; ~30% mitral MVR median age 53 years males 58%</td>
<td>AF: 15% high VKA arm; 20% VKA + ASA arm; p = 0.04 Mitral 29%; Aortic 66%; Multiple 4%</td>
<td>Major TE: 1.48%/year high VKA vs. 1.32%/year VKA + ASA, P = n.s. Major bleeding: 2.23%/year high VKA vs. 1.13%/year VKA + ASA; p = ns GI bleeding: 2.12%/year high VKA vs. 0.76%/year VKA + ASA, P = 0.14 Mean INR: high VKA arm 3.98. VKA + ASA 3.1 p < 0.001 Mortality: high VKA 8.1% vs. VKA + ASA 3.5% (RR for VKA + ASA 0.41, 95% CI 0.23-0.81) No significant differences in mortality (few events)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laffort et al. 56</td>
<td>RCT: VKA + ASA 200 mg daily vs. VKA alone INR target 3 (2.5–3.5) f.u.: 1 year</td>
<td>229 patients with MVR; mean age 63 years males 50%</td>
<td>Non-sinus rhythm: ~49% per arm Mitral: 100%</td>
<td>Major TE: 0.9% ASA + VKA vs. 4.1% VKA, P = ns. Total TE: 9% VKA + ASA vs. 25% VKA, P = 0.004; NNT = 6 Echocardiographic thrombi day 9: 4.8% ASA + VKA vs. 13.1% VKA, P = 0.03 Major bleeding: 19.2% ASA + VKA vs. 8.3% VKA, P = 0.02 NNH = 10</td>
<td>Major bleeding: 19.2% ASA + VKA vs. 8.3% VKA, P = 0.02</td>
<td>No significant differences in mortality (few events)</td>
</tr>
<tr>
<td>Larson and Fisher 49</td>
<td>Meta-analysis of 4 trials using aspirin</td>
<td>869 patients</td>
<td>Variable depending on the study</td>
<td>Major TE: 3.5% VKA + ASA vs. 11.3% VKA only NNT: 13 Major bleeding: 13.1% VKA + ASA vs. 8.1% VKA only NNH: 20</td>
<td>Major bleeding: 5.4% VKA + ASA vs. 7.9% VKA only Aspirin daily dose ranged from 100 to 1000mg</td>
<td></td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Reference</th>
<th>Design</th>
<th>Patients</th>
<th>AF and MVR position (%)</th>
<th>Efficacy</th>
<th>Safety</th>
<th>Comments or additional data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pengo et al.</td>
<td>RCT: low-intensity VKA (INR 2–3) + ASA 100 mg vs. higher intensity VKA (INR 2.5–3.5) for 6 months f.u.: 1.5 years</td>
<td>198 patients with MVR; mean age 60 years; males 46%</td>
<td>~28% per arm</td>
<td>VKA + ASA: 4 major bleeding and 1 ischaemic stroke; VKA: 2 major bleeding and 2 ischaemic stroke, $P = 0.6$</td>
<td>Cumulative endpoint of major bleeding and thrombosis</td>
<td>Very small study with short treatment and low number of events</td>
</tr>
<tr>
<td>Dong et al.</td>
<td>RCT: VKA + ASA 75–100 mg vs. VKA alone mean f.u.: 2.4 ± 0.9 months</td>
<td>1496 patients with mechanical MVR; mean age 35 years; males 40%</td>
<td>AF: 40% per arm</td>
<td>Major TE: 2.1% VKA + ASA vs. 3.6% VKA alone, $P = 0.04$</td>
<td>Major bleeding: 3.5 VKA + ASA vs. 3.7% in VKA alone; $P = n.s.$ NNH = 500</td>
<td>Warfarin dose: 2.92 ± 0.87 mg in VKA + ASA and 2.89 ± 0.79 mg in VKA alone. No differences in mortality rate</td>
</tr>
<tr>
<td>Massel and Little</td>
<td>Meta-analysis of RCT comparing VKA alone vs. VKA and antiplatelets</td>
<td>4122 patients with MVR in aortic or mitral position or both</td>
<td>Variable depending on the study</td>
<td>Major TE: ASA + VKA vs. VKA alone OR 0.43 [95% CI 0.32–0.5] $P < 0.001$</td>
<td>Major bleeding: Antiplatelet + VKA vs. VKA alone OR 1.58 [95% CI 1.14–2.18] $P < 0.001$ ASA high: OR 2.58 [95% CI 1.43–1.55] ASA 100 mg: OR 0.96 [95% CI 0.6–1.15] Statistical interaction high vs. low $P = 0.04$</td>
<td>Overall mortality: OR 0.57 [95% CI 0.42–0.78] Major bleeding in studies pre-1990: OR 2.34 [95% CI 1.34–4.08] after-1990: OR 1.26 [95% CI 0.84–1.89]</td>
</tr>
</tbody>
</table>

Data are presented as %/year; whenever possible, NNT and NNH per year are calculated for the comparisons including the combined VKA + antiplatelet treatment vs. VKA alone, whenever possible. AF, atrial fibrillation; ASA, aspirin; f.u., follow-up; INR, international normalized ratio; MVR, mechanical valve replacement; NNT, number needed to treat; NNH, number needed to harm; OR, odds ratio; RCT, randomized clinical trial; RRR, relative risk reduction; TE, thromboembolism; VKA, vitamin K antagonists.
with other clinically significant non-rheumatic VHD, including mitral regurgitation (MR), aortic regurgitation (AR), aortic stenosis (AS), mild mitral stenosis (MS) or prior valve surgery (bioprosthetic valves or valve repair) (Table 4). There are limited or no data on other options, such as MitraClip or other TMVI, and thus, NOACs should not be used in these patients.

Variable inclusion/exclusion criteria across the NOACs trials reflect the prevailing lack of a clear-cut definition of valvular AF. Patients with VHD of non-rheumatic origin are prevalent in clinical practice, and physicians may often deny NOACs to eligible AF patients due to uncertainty over whether the patient has valvular or non-valvular AF.

There are no randomized trials on NOACs in AF patients with VHD. In the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY), Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET-AF), Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) and Effective Anticoagulation with factor Xa Next Generation in Atrial Fibrillation-Thrombolysis in Myocardial Infarction 48 (ENGAGE-AF-TIMI 48) trial subgroup analyses, non-valvular AF patients with VHD were older, had more comorbidities (including renal dysfunction), more persistent/permanent AF and higher cardioembolic and bleeding risks than patients without VHD. Whilst the use of aspirin was broadly similar, prior VKA use was more common among patients with VHD. Irrespective of the treatment arm (i.e. warfarin or a NOAC), VHD patients generally experienced worse outcomes (stroke and systemic TE, major bleeding or all-cause death) in comparison to non-VHD patients (Table 5). Nonetheless, the efficacy of NOACs in reduction of SSEE or all-cause mortality was consistent among patients without or with VHD (irrespective of the VHD subtype). Likewise, the safety of NOACs in terms of lower risk of major bleeding or ICH was consistent irrespective of VHD status, excluding the significantly higher rates of major bleeding in VHD patients (particularly those with aortic stenosis, or mitral or aortic regurgitation) treated with rivaroxaban compared to warfarin (Table 5).

The number of patients with any prior valve surgery (i.e. bioprosthetic valves or valve repair) exposed to rivaroxaban, apixaban or edoxaban in the ROCKET-AF, ARISTOTLE or ENGAGE-AF-TIMI 48 trials, respectively, was very low (Table 5). Importantly, there are no head-to-head comparisons for any NOAC vs. VKA in AF patients with moderate to severe mitral stenosis; as mentioned, these patients were not enrolled in the NOACs trials.

The number of patients with any prior valve surgery (i.e. bioprosthetic valves or valve repair) exposed to rivaroxaban, apixaban or edoxaban in the ROCKET-AF, ARISTOTLE or ENGAGE-AF-TIMI 48 trials, respectively, was very low (Table 5). Nevertheless, as reported for apixaban and edoxaban, there was no statistically significant interaction between the presence of a bioprosthetic heart valve and the respective NOAC effects (Table 5), thus suggesting that apixaban or edoxaban may possibly be alternatives to warfarin in AF patients with bioprosthetic valves implanted >3 months ago.

Table 4 Inclusion/exclusion criteria pertinent to valvular heart disease in the pivotal NOAC trials in patients with ‘non-valvular’ AF and valvular disease type distribution across the trials

<table>
<thead>
<tr>
<th>Inclusion (✓)/exclusion (–) criteria</th>
<th>RE-LY<sup>61</sup></th>
<th>ROCKET-AF<sup>64</sup></th>
<th>ARISTOTLE<sup>67</sup></th>
<th>ENGAGE-AF<sup>28</sup></th>
<th>AVERROES<sup>63</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosthetic heart valve(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bioprosthesis</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Prior surgical repair<sup>a</sup></td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Moderate-to-severe MS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Other significant valve disease<sup>b</sup></td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Mild-to-moderate valve disease</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Subgroups with a cardiac valve disease<sup>c</sup></td>
<td>RE-LY<sup>58</sup></td>
<td>ROCKET-AF<sup>64</sup></td>
<td>ARISTOTLE<sup>67</sup></td>
<td>ENGAGE-AF<sup>28</sup></td>
<td>AVERROES<sup>63</sup></td>
</tr>
<tr>
<td>Total n (%)</td>
<td>3950 (21.8)</td>
<td>2003 (14.1)</td>
<td>4808 (26.4)</td>
<td>2824 (13.4)</td>
<td>NR</td>
</tr>
<tr>
<td>Moderate/severe MR</td>
<td>3101 (78.5)</td>
<td>1756 (87.7)</td>
<td>3526 (73.3)</td>
<td>2250 (79.6)</td>
<td>NR</td>
</tr>
<tr>
<td>Moderate/severe AR</td>
<td>817 (20.7)</td>
<td>486 (24.3)</td>
<td>887 (18.4)</td>
<td>369 (13.0)</td>
<td>NR</td>
</tr>
<tr>
<td>Moderate/severe AS</td>
<td>471 (11.9)</td>
<td>215 (10.7)</td>
<td>384 (8.0)</td>
<td>165 (5.8)</td>
<td>NR</td>
</tr>
<tr>
<td>Other</td>
<td>1179 (6.5)</td>
<td>11 (0.6)<sup>d</sup></td>
<td>2124 (44.2)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Mild MS</td>
<td>193 (4.9)</td>
<td>NR</td>
<td>131 (2.7)</td>
<td>254 (9.0)</td>
<td>NR</td>
</tr>
<tr>
<td>Prior valve surgery (excluding mechanic prosthetic heart valve)</td>
<td>Not applicable</td>
<td>106 (5.3)</td>
<td>251 (5.2)</td>
<td>325 (11.5)</td>
<td>NR</td>
</tr>
<tr>
<td>Valve repair</td>
<td>—</td>
<td>42 (2.1%)</td>
<td>NR</td>
<td>123 (4.3)</td>
<td>NR</td>
</tr>
<tr>
<td>Valvuloplasty</td>
<td>—</td>
<td>64 (3.2%)</td>
<td>NR</td>
<td>19 (0.7)</td>
<td>NR</td>
</tr>
<tr>
<td>Bioprosthetic valves</td>
<td>—</td>
<td>Not applicable</td>
<td>82 (1.7)</td>
<td>191 (6.8)</td>
<td>NR</td>
</tr>
</tbody>
</table>

AF, atrial fibrillation; AR, aortic regurgitation; AS, aortic stenosis; MR, mitral regurgitation; MS, mitral stenosis; NOAC, non-vitamin K antagonist oral anticoagulant; NR, not reported.

^aAnnuloplasty, Commisurotomy, Valvuloplasty, etc.

^b Clinically significant, but not requiring immediate surgery repair.

^c Categories are not mutually exclusive.

^d Without any of the preceding.
Table 5 Major outcomes in AF patients by valvular heart disease status and treatment

<table>
<thead>
<tr>
<th>Outcome trial</th>
<th>NOAC/Warfarin</th>
<th>VHD (Rate %/year)</th>
<th>No VHD (Rate %/year)</th>
<th>VHD NOAC vs. warfarin HR (95% CI)</th>
<th>No VHD NOAC vs. warfarin HR (95% CI)</th>
<th>Interaction P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke/SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCKET-AF64</td>
<td>Rivaroxaban/Warfarin</td>
<td>2.01/2.43</td>
<td>1.92/2.22</td>
<td>0.83 (0.55–1.27)</td>
<td>0.89 (0.75–1.07)</td>
<td>0.70</td>
</tr>
<tr>
<td>ARISTOTLE65</td>
<td>Apixaban/Warfarin</td>
<td>1.46/2.08</td>
<td>1.20/1.43</td>
<td>0.70 (0.51–0.97)</td>
<td>0.84 (0.67–1.04)</td>
<td>0.378</td>
</tr>
<tr>
<td>RE-LY59</td>
<td>Dabi-150 mg/Warfarin</td>
<td>1.12/1.90</td>
<td>1.11/1.66</td>
<td>0.59 (0.37–0.93)</td>
<td>0.67 (0.52–0.86)</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>Dabi-110 mg/Warfarin</td>
<td>1.84/1.90</td>
<td>1.45/1.66</td>
<td>0.97 (0.65–1.45)</td>
<td>0.88 (0.70–1.10)</td>
<td>0.65</td>
</tr>
<tr>
<td>ENGAGE-AF28</td>
<td>HDER/Warfarin</td>
<td>1.39/2.02</td>
<td>1.60/1.77</td>
<td>0.69 (0.44–1.07)</td>
<td>0.91 (0.77–1.07)</td>
<td>0.255</td>
</tr>
<tr>
<td></td>
<td>LDER/Warfarin</td>
<td>1.94/2.02</td>
<td>2.04/1.77</td>
<td>0.97 (0.66–1.44)</td>
<td>1.15 (0.98–1.35)</td>
<td>0.440</td>
</tr>
<tr>
<td>ARISTOTLE67</td>
<td>bioprosthetic valves (n = 82)</td>
<td>2.9/0.0</td>
<td>NA</td>
<td>NA</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>ENGAGE-AF28</td>
<td>bioprosthetic valves (n = 191)</td>
<td>1.19/1.66</td>
<td>NA</td>
<td>0.37 (0.10–1.42)</td>
<td>NA</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>HDER/Warfarin</td>
<td>2.57/1.66</td>
<td>NA</td>
<td>0.53 (0.16–1.78)</td>
<td>NA</td>
<td>0.31</td>
</tr>
<tr>
<td>Major bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCKET-AF64</td>
<td>Rivaroxaban/Warfarin</td>
<td>6.14/4.20</td>
<td>3.22/3.33</td>
<td>1.56 (1.14–2.14)</td>
<td>0.98 (0.84–1.15)</td>
<td>0.01</td>
</tr>
<tr>
<td>ARISTOTLE65</td>
<td>Apixaban/Warfarin</td>
<td>2.49/3.14</td>
<td>2.01/3.07</td>
<td>0.79 (0.61–1.04)</td>
<td>0.65 (0.55–0.77)</td>
<td>0.23</td>
</tr>
<tr>
<td>RE-LY59</td>
<td>Dabi-150 mg/Warfarin</td>
<td>4.21/5.12</td>
<td>3.06/3.14</td>
<td>0.82 (0.64–1.06)</td>
<td>0.98 (0.83–1.15)</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Dabi-110 mg/Warfarin</td>
<td>3.77/5.12</td>
<td>2.63/3.14</td>
<td>0.73 (0.56–0.95)</td>
<td>0.84 (0.71–0.99)</td>
<td>0.38</td>
</tr>
<tr>
<td>ENGAGE-AF28</td>
<td>HDER/Warfarin</td>
<td>3.28/4.46</td>
<td>2.66/3.27</td>
<td>0.74 (0.53–1.02)</td>
<td>0.82 (0.71–0.94)</td>
<td>0.573</td>
</tr>
<tr>
<td></td>
<td>LDER/Warfarin</td>
<td>1.82/4.46</td>
<td>1.59/3.27</td>
<td>0.41 (0.28–0.60)</td>
<td>0.49 (0.41–0.57)</td>
<td>0.439</td>
</tr>
<tr>
<td>ARISTOTLE67</td>
<td>bioprosthetic valves (n = 82)</td>
<td>7.9/5.2</td>
<td>NA</td>
<td>NA</td>
<td>0.50 (0.15–1.67)</td>
<td>NA</td>
</tr>
<tr>
<td>ENGAGE-AF28</td>
<td>bioprosthetic valves (n = 191)</td>
<td>HDER/Warfarin</td>
<td>NR</td>
<td>0.50 (0.15–1.67)</td>
<td>NA</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>HDER/Warfarin</td>
<td>0.76/6.27</td>
<td>NA</td>
<td>0.12 (0.01–0.95)</td>
<td>NA</td>
<td>0.045</td>
</tr>
<tr>
<td>ICH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCKET-AF64</td>
<td>Rivaroxaban/Warfarin</td>
<td>0.88/0.73</td>
<td>0.43/0.74</td>
<td>1.27 (0.58–2.79)</td>
<td>0.59 (0.40–0.86)</td>
<td>0.084</td>
</tr>
<tr>
<td>ARISTOTLE65</td>
<td>Apixaban/Warfarin</td>
<td>0.25/0.88</td>
<td>0.37/0.78</td>
<td>0.28 (0.14–0.57)</td>
<td>0.47 (0.33–0.68)</td>
<td>0.20</td>
</tr>
<tr>
<td>RE-LY53</td>
<td>Dabi-150 mg/Warfarin</td>
<td>0.34/0.93</td>
<td>0.31/0.72</td>
<td>0.36 (0.17–0.77)</td>
<td>0.43 (0.28–0.67)</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Dabi-110 mg/Warfarin</td>
<td>0.27/0.93</td>
<td>0.21/0.72</td>
<td>0.29 (0.13–0.68)</td>
<td>0.30 (0.18–0.49)</td>
<td>0.98</td>
</tr>
<tr>
<td>ENGAGE-AF28</td>
<td>HDER/Warfarin</td>
<td>0.32/0.82</td>
<td>0.41/0.85</td>
<td>0.39 (0.15–0.98)</td>
<td>0.48 (0.35–0.66)</td>
<td>0.657</td>
</tr>
<tr>
<td></td>
<td>LDER/Warfarin</td>
<td>0.24/0.82</td>
<td>0.26/0.85</td>
<td>0.29 (0.11–0.79)</td>
<td>0.31 (0.21–0.45)</td>
<td>0.926</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCKET-AF64</td>
<td>Rivaroxaban/Warfarin</td>
<td>5.48/5.60</td>
<td>4.19/4.60</td>
<td>0.98 (0.75–1.29)</td>
<td>0.91 (0.80–1.03)</td>
<td>0.60</td>
</tr>
<tr>
<td>ARISTOTLE65</td>
<td>Apixaban/Warfarin</td>
<td>4.95/4.88</td>
<td>3.02/3.61</td>
<td>1.01 (0.84–1.22)</td>
<td>0.84 (0.73–0.96)</td>
<td>0.101</td>
</tr>
<tr>
<td>RE-LY59</td>
<td>Dabi-150 mg/Warfarin</td>
<td>4.28/4.73</td>
<td>3.46/3.96</td>
<td>0.91 (0.70–1.17)</td>
<td>0.87 (0.75–1.01)</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>Dabi-110 mg/Warfarin</td>
<td>4.35/4.73</td>
<td>3.58/3.96</td>
<td>0.92 (0.71–1.19)</td>
<td>0.90 (0.78–1.04)</td>
<td>0.89</td>
</tr>
<tr>
<td>ENGAGE-AF28</td>
<td>HDER/Warfarin LDER/Warfarin</td>
<td>5.64/5.71</td>
<td>3.62/4.13</td>
<td>1.13 (0.90–1.41)</td>
<td>0.88 (0.78–0.98)</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>HDER/Warfarin LDER/Warfarin</td>
<td>5.81/5.71</td>
<td>3.46/4.13</td>
<td>1.03 (0.82–1.29)</td>
<td>0.83 (0.75–0.93)</td>
<td>0.100</td>
</tr>
<tr>
<td>ARISTOTLE67</td>
<td>bioprosthetic valves (n = 82)</td>
<td>6.9/7.1</td>
<td>NA</td>
<td>NA</td>
<td>0.46 (0.23–0.91)</td>
<td>NA</td>
</tr>
<tr>
<td>ENGAGE-AF28</td>
<td>bioprosthetic valves (n = 191)</td>
<td>6.9/7.1</td>
<td>NA</td>
<td>0.46 (0.23–0.91)</td>
<td>NA</td>
<td>0.03</td>
</tr>
</tbody>
</table>

ICH, intracranial haemorrhage; NA, not applicable; NOACS, non-vitamin K oral anticoagulants; NR, not reported; SE, systemic embolism; VHD, valvular heart disease.

aThere was no effect modification of the presence or absence of VHD on relative outcomes with higher- or lower-dose edoxaban in comparison to warfarin (all interaction P were non-significant).

bIn the subanalyses including only bioprosthetic valves, the rates of ICH were not specified; Composite outcome of stroke/SE, major bleeding or death.
A meta-analysis of the VHD sub-groups from the RE-LY, ROCKET-AF, ARISTOTLE and ENGAGE AF-TIMI 48 trials broadly confirmed the findings shown in Table 5. Overall, AF patients with VHD had non-significantly higher rate of SSEE (RR 1.13; 95% CI, 0.99–1.28) and significantly higher rates of major bleeding (RR 1.34; 95% CI, 1.13–1.49) and all-cause death (RR 1.34; 95% CI, 1.13–1.59) than patients without VHD.

Compared with warfarin, the use of NOACs (i.e. rivaroxaban, apixaban or higher doses of dabigatran or edoxaban) was associated with consistently lower rates of SSEE regardless of the presence or absence of VHD (RR 0.70; 95% CI, 0.58–0.86 and 0.84; 95% CI, 0.75–0.95, respectively; interaction P = 0.31), similar major bleeding rates (VHD RR 0.93; 95% CI, 0.67–1.27 and non-VHD RR 0.85; 95% CI 0.70–1.02, interaction P = 0.63), consistently lower rates of ICH (VHD RR 0.47; 95% CI, 0.24–0.93 and non-VHD RR 0.49; 95% CI, 0.41–0.59, interaction P = 0.91) and higher all-cause death rate in VHD patients (RR 1.01; 95% CI, 0.90–1.14) than in those without VHD (RR 0.88; 95% CI, 0.82–0.94), interaction P = 0.03. In the analysis that also included the lower doses of dabigatran and edoxaban, the magnitude of SSEE risk reduction with NOACs vs. warfarin was slightly reduced, as well as the rates of major bleeding and ICH, but there were no significant subgroup interactions by VHD status. Overall, the presence of VHD did not affect the relative protective effect of NOACs compared with warfarin in terms of SSEE and major bleeding. These findings were further supported by another meta-analysis of the four NOACs yielding identical results. Of note, both meta-analyses reported significant treatment effect heterogeneity regarding the analysis of major bleeding.

With the exclusion of patients with moderate-to-severe mitral stenosis, prosthetic mechanical heart valve, TAVI or TMVI, who were not enrolled in the non-valvular AF trials, the aforementioned subgroup and meta-analyses may suggest that AF patients with VHD would experience at least the same benefit from NOACs as patients without VHD. However, due to limitations inherent to these types of analyses, further RCTs are required in AF patients with VHD before recommendations can be given (see Tables 4 and 5).

Prosthetic mechanical heart valves: Randomized, Phase II Study to Evaluate the Safety and Pharmacokinetics of Oral Dabigatran Etexilate in Patients after Heart Valve Replacement

Mechanical valve prosthesis trigger complex mechanisms of thrombogenesis and are associated with a very high cardioembolic risk requiring chronic OAC even in the absence of AF. Animal studies on mechanical valve implantation using first the direct FIIa inhibitors melagatan and then dabigatran as well as the phase III data from the RE-LY trial informed the only study to date on a NOAC in patients with mechanical heart valves.

The Randomized, Phase II Study to Evaluate the Safety and Pharmacokinetics of Oral Dabigatran Etexilate in Patients after Heart Valve Replacement (RE-ALIGN) trial was a phase-II, controlled, dose-finding, open-label study randomizing (2:1) patients with aortic (n = 172; 68%) or mitral (n = 71; 28%) mechanical valve replacement, or both (n = 9; 4%) to dabigatran or adjusted-dose warfarin (target INR 2.0–3.0 or 2.5–3.5 in aortic or mitral position, respectively). The initial dabigatran dose of 150, 220, or 300 mg b.i.d. (selected according to renal function) was further adjusted over 12 weeks to achieve the primary study outcome—a trough plasma concentration ≥50 ng/mL, based on the pharmacokinetic model from the RE-LY trial. Most patients (79%) received study drug 5–7 days after surgery, and 23% of patients had AF. The RE-ALIGN study was prematurely terminated after randomizing 252 of 405 planned patients, due to an excess in stroke (5% vs. 0%), valve thrombosis (3% vs. 0%) and major bleeding events (4% vs. 2%) in the dabigatran arm, after a mean dabigatran exposure of ~20 weeks. Different explanations have been proposed, including inadequate dabigatran plasma concentrations, different pharmacodynamics of dabigatran and warfarin, excessive activation of the contact coagulation pathway induced by the sewing ring in the early postoperative course, a higher inter-individual variability in the dabigatran arm and differences in predicted vs. observed drug concentrations in the RE-LY vs. RE-ALIGN. A recent in vitro study suggested that the dabigatran trough plasma concentration required to reduce valve-induced FIIa generation should be much higher than 50 ng/mL (that is, 260 ng/mL) corresponding to a 620 mg b.i.d. dosing. At present, all AF patients with a mechanical valve prosthesis should be treated with VKAs.

Consensus statements

- **The use of the NOACs in patients with AF and mechanical valve prosthesis is contraindicated.**
- **Randomized clinical trials testing the efficacy and safety of direct oral FXa inhibitors in patients with AF and mechanical heart valved prosthesis are lacking. Until more data are available, rivaroxaban, apixaban, and edoxaban are contraindicated in such patients.**
- **Until more data are available, AF patients with any degree of rheumatic mitral valve stenosis and those with moderate-to-severe non-rheumatic mitral valve stenosis should not be treated with NOACs.**
- **The efficacy and safety of NOACs for stroke/SE prevention may be similar in AF patients with and without conservative valve surgery such as annuloplasty, commissurotomy or valvuloplasty, or bioprosthetic valves based on small numbers of patients in post hoc analyses of RCTs.**

Downloaded from https://academic.oup.com/europace/article-abstract/doi/10.1093/europace/eux240/4098134/Antithrombotic-therapy-in-atrial-fibrillation by University of Cape Town Libraries user on 04 September 2017
Antithrombotic therapy in patients with atrial fibrillation undergoing trans-aortic valve intervention or left atrial appendage occlusion

Trans-aortic valve intervention procedure

Most ischaemic events after TAVI are cerebrovascular, and for these AF is a strong contributor. AF is common among high-risk patients with severe aortic stenosis undergoing TAVI, and is associated with a >2-fold increased risk of all-cause and cardiovascular death, irrespective of the type of AF. In addition, the implanted valve adds a prothrombotic environment, which would accentuate the cardioembolic risk. Of importance, the gradient of risk directly correlates with the CHA2DS2-VASc score, which is usually used to aid decision-making as whether to initiate OAC. At least 30% of the TAVI population requires OAC, a strategy that seems underused and that has never been evaluated prospectively. Dual antiplatelet therapy (DAPT) remains the most widely used antithrombotic strategy after TAVI, being used in >60% of patients, while VKA is used in <20% of patients, although AF is observed in >40% of TAVI patients. Current recommendations are expert-driven, rather than evidence-based (Table 6).

Up to 35% patients undergo coronary stenting prior to TAVI. In such patients, the risk of stent thrombosis and/or ischaemic cardiac events in addition to that of AF should be considered in the overall risk assessment. Here triple therapy, a combination of a VKA, low-dose aspirin and clopidogrel, is used in high risk patients, and associated with an increased risk of death, stroke, TE, or major bleeding when compared to VKA alone. Such combinations should be discussed in the context of recent (i.e. <6 months) acute coronary syndrome and/or stent implantation, especially in the presence of an unfavourable coronary anatomy (more than three stents, stent length ≥60 mm, multivessel disease, left main disease) but should be avoided whenever deemed possible given the established better safety and the possible preserved efficacy of a combination of warfarin and clopidogrel in patients with AF undergoing drug-eluting stent placement.

Recent evidence suggests that VKA alone is much safer and provides a similar rate of ischaemic events as compared to VKA plus antiplatelet therapy (aspirin) in patients undergoing TAVI. However this study was observational, not randomized with an unbalanced number of patients per treatment arm, and randomized confirmation is needed. Therefore, the association of OAC with SAPT in AF patients who underwent successful TAVI should be considered up to one year when there is a recent ACS or a recent coronary stenting and when the bleeding risk is deemed low (Figure 2).

OAC alone as antithrombotic strategy is currently being tested in three trials (POPular-TAVI NCT02247128, GALILEO NCT02556203, ATLANTIS trial NCT02664649), while another trial is testing aspirin alone or in combination with clopidogrel (ARTE NCT02640794), although AF patients appear excluded. Indeed, the benefit of VKA over DAPT in AF depends on the quality of INR control, and it has been modelled that a time in therapeutic range ≥58% would be needed to benefit from being on OAC rather than on DAPT, which is probably not the case in the TAVI population.

Subclinical valve thrombosis is another challenging issue as it may occur early after TAVI. Although the frequency of this potentially ominous phenomenon remains undefined, as this condition is difficult to detect, but it seems reversible with anticoagulation. Whether it is associated with cerebrovascular events remains to be established. Given all these uncertainties, ongoing trials are also testing the anticoagulation hypothesis after successful TAVI irrespective of the need of OAC hypotheses using NOACs (NCT02556203, NCT02664649) which have been shown to be better tolerated. Figure 2 shows all currently recommended treatment options.

Recent observational evidence suggest the safety of FXa inhibition in TAVI, showing the feasibility of NOAC in the post-TAVI setting. However, results from randomized comparison of FXa inhibition vs. other antithrombotic strategies are lacking.

Left atrial appendage occlusion procedure

Following clinical trials, percutaneous endovascular left atrial appendage occlusion (LAAO) has been increasingly developed and performed worldwide for patients with AF, especially those with contraindications to long-term OAC. This is supported by guidelines from the ESC, which give a class IIB recommendation for LAAO in AF patients with high stroke risk and contraindications to long-term OAC.

Antithrombotic therapy following LAAO has not been well evaluated, and it is not even known whether OAC or antiplatelet therapy or no therapy is preferable. When possible according to the patient bleeding risk profile, after LAAO most centres use a 6-week period of VKA (target INR 2.5) followed by once daily clopidogrel (75 mg) as substitution.

Antithrombotic therapy in AF with valvular heart disease

Table 6

<table>
<thead>
<tr>
<th>Coloured heart</th>
<th>Supporting references</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,66–72,77,78</td>
<td></td>
</tr>
<tr>
<td>67,68,71–75,77</td>
<td></td>
</tr>
</tbody>
</table>

NB. Recommendations for TAVI are given in the specific section.
and aspirin (75–325 mg) until the 6-months visit. Some patients may also receive NOAC. Subsequently, low-dose aspirin alone is continued indefinitely, as tested in the pivotal trials. This anti-platelet regimen has never been compared with any long term NOAC-based anticoagulation regimen. However, the ASAP study showed that LAAO with the Watchman device is feasible and could be safely performed without OAC cover (but with antiplatelet therapy). Such strategy is being evaluated in the ongoing ADRIATIC study (Apixaban versus Dual or single antiplatelet therapy to Reduce Ischemic and bleeding events in Atrial fibrillation patients Treated with Invasive Closure of the left atrial appendage). The ASAP TOO randomized trial (NCT02928497) is currently establishing the safety

<table>
<thead>
<tr>
<th>Table 6</th>
<th>Recommendations for antithrombotic therapy during and after TAVI in the guidelines in patients with and without indication for OAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC/AHA/STS</td>
<td>ESC</td>
</tr>
<tr>
<td>Procedural</td>
<td>Unfractionated Heparin (ACT > 300 s)</td>
</tr>
<tr>
<td>Post-procedural</td>
<td>Aspirin 81 mg indefinitely and Clopidogrel 75 mg for 3 up to 6 months</td>
</tr>
<tr>
<td>Patients with a clear indication for OAC (as in AF)</td>
<td>It is reasonable to continue low-dose Aspirin, but other antiplatelet therapy should be avoided</td>
</tr>
</tbody>
</table>

ACC, American College of Cardiology; ACT, activated clotting time; ACCP, American College of Chest Physicians; AF, atrial fibrillation; AHA, American Heart Association; ASA, acetylsalicylic acid (aspirin); AVR, aortic valve replacement; CCS, Canadian Cardiovascular Society; ESC, European Society of Cardiology; INR, international normalized ratio; VKA, vitamin K antagonists.

Figure 2 Proposed algorithm for AF patients undergoing a TAVI procedure (adapted from references 87). O refers to oral anticoagulation as VKA (or possibly NOAC). ASC, acute coronary syndrome; CAD, coronary artery disease; DAPT, dual antiplatelet therapy; OAC, oral anticoagulant; SAPT, single antiplatelet therapy.

*Recent ACS or coronary stenting (<6 months)
and effectiveness of the LAAO vs. SAPT in patients with non-valvular AF deemed not to be eligible for OAC to reduce the risk of stroke.

Consensus statements

<table>
<thead>
<tr>
<th>Coloured heart</th>
<th>Supporting references</th>
</tr>
</thead>
<tbody>
<tr>
<td>• AF patients who underwent successful TAVI may be treated with FXa inhibitors; however data are limited.</td>
<td>9</td>
</tr>
<tr>
<td>• AF patients with stable coronary artery disease who underwent TAVI may be treated with OAC only, including VKA and FXa inhibitors; however prospective data are limited.</td>
<td>9,82,83</td>
</tr>
<tr>
<td>• Based on trial protocols, OAC and single antiplatelet therapy after successful LAAO may be used up to 6 weeks in low bleeding risk patients, followed by single antiplatelet therapy; however, long term data are limited, nor any comparison with NOACs.</td>
<td>89,90,95</td>
</tr>
<tr>
<td>• Single antiplatelet therapy or no antithrombotic therapy may be used after LAAO in AF patients who are not eligible for VKA; however, long term data are limited, nor any comparison with NOACs.</td>
<td>9,96</td>
</tr>
</tbody>
</table>

Antithrombotic therapy for valvular atrial fibrillation in pregnant women

Valvular AF in pregnancy is relatively rare and can be due to congenital heart disease, mitral valve prolapse with significant mitral regurgitation, or to rheumatic heart disease. Valves can be repaired or replaced with a mechanical valve prosthesis.\(^9\) Pregnancy by itself is a prothrombotic state and the coalescence of venous stasis and hypercoagulability results in nearly a five-fold increase in the risk of venous thromboembolism during pregnancy.\(^86\) The goal of anticoagulation during pregnancy should be to safely balance the maternal risk of TE and haemorrhage with the foetal risk of exposure to VKA. The continuously changing pharmacokinetics of LMWH during the various trimesters adds an additional challenge and requires monitoring by peak and trough anti-Xa levels.\(^86\) which is often not feasible (Figure 3).\(^86\)

Women of child-bearing age with VHD need to be comprehensively counselled prior to valve replacement and pre-pregnancy to decide on the most appropriate type of valve and to be made aware of the teratogenicity and fetotoxicity of VKA, pregnancy-induced haemodynamic changes and the pre-existing hypercoagulable state which can compromise foetal development and significantly increase the risk of serious and/or fatal complications to both mother and child.\(^98\) Women with mechanical prosthetic valves should ideally have preconception evaluation, including advice on risk prediction and contraception, by a joint cardiac-obstetric team seeking advice from other specialties.\(^97\) Careful counselling on maternal and offspring risk should be done according the modified World Health Organization classification and should include information on complications such as heart failure, valve thrombosis, bleeding complications which can occur during, but also beyond the immediate delivery period. Also, the consequences of the medication that may be required (for example warfarin embryopathy) need to be discussed. However, often women in some countries may present after 20 weeks of gestation, which has implications for their functional assessment, harmful medication can’t be terminated timely and limits the option for pregnancy termination. Such cases are challenging and should be managed at tertiary centre where they can be appropriately assessed and guided/treated. Since anticoagulation is recommended in pregnant women with AF at risk of stroke, to minimise teratogenic risk and intruterine bleeding, the ESC guidelines recommend that dose adjusted heparin should be used during the first trimester of pregnancy and in the 2–4 weeks before delivery.\(^4\) VKA or heparin can be used in the remaining trimesters of the pregnancy.\(^6\) In the absence of adequate safety data, NOACs should be avoided in pregnancy and in women planning a pregnancy.\(^4\)

Consensus statements

<table>
<thead>
<tr>
<th>Coloured heart</th>
<th>Supporting references</th>
</tr>
</thead>
<tbody>
<tr>
<td>• There is no consensus on the optimal regimen for anticoagulation in peripartum women with mechanical valve prosthesis with AF.</td>
<td>86,97,99</td>
</tr>
<tr>
<td>• As the optimal anticoagulation regimen for use in pregnancy and peripartum remains undetermined, all decisions should be made by a fully informed mother and partner in consultation with a multidisciplinary team.</td>
<td>86,97,99</td>
</tr>
</tbody>
</table>

Patient values and preferences, and societal issues

Treatment decisions need to balance the benefits and risks of treatment and manage realistic patient expectations, particularly in association with co-morbidities and in pregnancy. These decisions are complex and require assimilation of life expectancy, ability and willingness to take anticoagulants, risk of bleeding, lifestyle, co-morbidities, risk of re-operation, and patient preference.\(^100\)–\(^102\)

Clinical guidelines on the management of VHD\(^100\) advocate incorporating informed patient preferences into treatment decisions and technological advances (for VHD) must be employed ‘responsibly within a framework of care which enables shared decision making and promotes patient goals and well-being.\(^103\) This requires candid discussions between the patient and physician to ensure that
treatment is not futile. Shared decision making requires patients to be appropriately informed about treatment options and likely outcomes, to have the type of patient-physician relationship where patients feel able to ask questions and where physicians provide information and communicate risk effectively, to enable patients to make an informed decision incorporating their values, goals and preferences. Patient’s treatment preferences are likely to vary markedly, with patients often willing to accept higher levels of risk. Patient decision-aids including micro-simulation models are available for patients with VHD.

Implications for low-to-middle income countries

Valvular AF is more common in the Asian and African population compared to their western counterparts mainly due to greater burden of rheumatic heart disease. Stroke risk is higher among patients with valvular AF (17–18%/year) compared to those with non-valvular AF (4%/year). Further, AF may further increase the risk of bioprosthetic valve thrombosis (see Supplementary material online, Table S4). The burden of rheumatic valve disease is higher, but the quality of anticoagulation is suboptimal in low and middle income countries. Monitoring of the INR and follow-up remains poor and significant proportion of patients present with sub-therapeutic INR. The majority of these patients are young (median age 28 years), unemployed (75.3%) and women (51–66%) of reproductive age. On average, they tend to be nearly 10–12 years younger than their western counterparts. Many are unaware of the concept of therapeutic range INR (60%) and few (<4%) are on contraceptives despite treatment with warfarin. The NOACs are expensive and beyond the reach of the majority of patients requiring them in these countries. Suboptimal anticoagulation and consequent increased risk of stroke, may lead to significant disability adjusted life years lost and this is likely to pose a major economic burden. Strategies to improve awareness: (i) about the disease, (ii) medication side-effects, (iii) importance of medication adherence and INR monitoring, and (iv) the danger of anticoagulation during pregnancy are scanty. Although point of care INR testing shows promise (see Supplementary material online, Table S4), its use among patients from the developing world needs to be determined. The impact of NOACs is less certain, although one recent Brazilian study evaluating NOACs in public health system context found that NOACs present a lower cumulative cost per patient when compared to VKAs.

Health economic perspectives

AF is a disease that induces significant consumption of resources and costs, encompassing direct medical costs, associated with patient’s
Antithrombotic therapy in AF with valvular heart disease

Summary and areas for future research

Mechanical valve prostheses

Currently, patients with AF and a mechanical prosthesis should only be treated with a VKA. Since the RE-ALIGN study, no other NOAC (factor Xa inhibitor drug class) has been tested in this patient group. Moreover, the thrombotic risk could be reduced once endothelial tissue is present around the ring. A trial could potentially be designed after endothelialization: the first 3 months with VKA, followed by a randomized comparison between continuing VKA or switching to a NOAC.

One trial proposed or ongoing with NOACs in patients with and without AF, is the Comparison of Antithrombotic Treatments After Aortic Valve Replacement. Rivaroxaban: A New Antithrombotic Treatment for Patients With Mechanical Prosthetic Aortic Heart Valve: CATHAR trial (https://clinicaltrials.gov/ct2/show/NCT02128841?term=rivaroxaban-i-and-i-mechanical-i-valve&rank=2).

Bioprostheses, trans-aortic valve intervention, and transcatheter mitral valve interventions

Usually, patients with a bioprosthesis and AF receive a VKA. Pericardial valves are less thrombogenic than mechanical valve prostheses. Some physicians do not consider bioprostheses as a contra-indication of NOACs. Before recommending a NOAC rather than VKA for these patients, a randomized trial is needed. This is also the case for patients undergoing valve repair.

Trans-aortic valve intervention corresponds to transluminal implantation of a bioprosthesis and is being increasingly used. The antithrombotic treatment in patients with sinus rhythm and TAVI remains controversial and the optimal treatment in patients with AF requiring TAVI (as well as TMVI—see earlier section) is currently unknown.

A global study comparing a rivaroxaban-based anti-thrombotic strategy to an antiplatelet-based strategy after TAVI to optimize clinical outcomes (GALILEO) is currently ongoing. The two arms consist of either rivaroxaban 10 mg once daily and aspirin 75–100 mg for the first 90 days, followed by rivaroxaban alone; or clopidogrel 75 mg and aspirin 75–100 mg for the first 90 days, followed by clopidogrel alone. Patients with current or previous AF are excluded. The investigators assume that 15% of patients in sinus rhythm at inclusion will develop AF during follow-up. Treatment after new onset AF will be, in patients randomized to rivaroxaban, a switch to rivaroxaban 20 mg OD or 15 mg OD for those with moderate renal impairment and in those randomized to clopidogrel, a switch to VKA (target INR 2–3).

Another ongoing study is the Anti-Thrombotic Strategy after Trans-Aortic Valve Implantation for Aortic Stenosis (ATLANTIS) study which is ongoing and plans to include 1509 patients after successful TAVI procedure. Randomization will be stratified according to the need for oral anticoagulant. Patients with an indication for OAC will be randomized 1:1 to VKA or apixaban 5 mg b.i.d. The primary endpoint after 1 year follow-up is a composite of death, myocardial infarction, stroke, systemic embolization, intracardiac or bioprosthesis thrombus, episode of deep vein thrombosis or pulmonary embolism, and major bleeding. Patients with no indication for oral anticoagulant therapy will be randomized 1:1 to either apixaban 5 mg bid or antiplatelet therapy. Other trials are also proposed or ongoing with NOACs in patients with and without AF, include the Rivaroxaban for bioprosthetic Valvular Heart disease E and atRial Fibrillation Trial (Warfarin vs. Rivaroxaban): RIVER Trial.
Native valve diseases

The main phase III studies of NOACs have used variable criteria for excluding valvular patients. Some studies (ROCKET-AF and ARISTOTLE) only excluded patients with mechanical valve prostheses and significant (moderate to severe) mitral stenosis. The subanalyses did not show any differences in efficacy among patients with and without VHD. In the ROCKET-AF, there was more bleeding on rivaroxaban than on VKA in patients with VHD.

A report from the Loire Valley Atrial Fibrillation Project compared the outcome of patients without any valve disease and those with valve disease but did not include either valve prosthesis or mitral stenosis. Although patients with VHD had a higher risk of stroke and TE events on univariable analysis, the difference was no longer significant after adjustment, in line with an older age and a higher CHA2DS2-VASC score in patients with VHD.128

However, post hoc analyses are only hypothesis generating. Large RCTs are needed with NOACs in the setting of AS, non-rheumatic AR and MR before the role of NOACs can be fully defined in this setting.

Mitral stenosis

There has not yet been a randomized trial comparing VKA and NOACs in these patients. The prevalence of rheumatic mitral stenosis has become low in Western countries but remains high in Eastern Europe, India, Africa, South America, and south East Asia. In these regions, the time in therapeutic range is only 35–44%, according to a global AF registry.1 Randomized clinical trials comparing VKA with a NOAC is highly welcomed and should preferably include patients from these affected countries.

Supplementary material

Supplementary material is available at Europace online.

References

Antithrombotic therapy in AF with valvular heart disease

G.Y.H. Lip

